產品分類
-
實驗室儀器
按功能分
- 提供實驗環(huán)境的設備
- 分離樣品并處理設備
- 對樣品前處理的設備
- 處理實驗器材的設備
- 保存實驗樣品用設備
- 計量儀器
- 培養(yǎng)孵育設備
- 基礎通用設備
- 通用分析儀器
- 樣品結果分析
- 1. CO2培養(yǎng)箱
- 2. 動物細胞培養(yǎng)罐
- 3. 封口用
- 4. 發(fā)芽箱
- 5. 孵育器
- 6. 發(fā)酵罐
- 7. 恒溫槽、低溫槽
- 8. 恒溫恒濕
- 9. 培養(yǎng)箱
- 10. 培養(yǎng)架
- 11. 人工氣候箱
- 12. 水浴、油浴、金屬浴
- 13. 搖床
- 14. 厭氧微需氧細胞培養(yǎng)設備
- 顯微鏡
- 電化學分析類
- 其他
按專業(yè)實驗室分- 化學合成
- 乳品類檢測專用儀器
- 細胞工程類
- 種子檢測專用儀器
- 病理設備
- 1. 乳品類檢測專用儀器
- 1. 細胞分析儀
- 2. 細胞培養(yǎng)用品
- 3. 細胞融合、雜交
- 1. 種子檢測專用儀器
- 層析設備
- 動物實驗設備
- 糧油檢測
- 生物類基礎儀器
- 植物土壤檢測
- 1. 電泳(電源)儀、電泳槽
- 2. 分子雜交
- 3. 基因工程
- 4. PCR儀
- 5. 紫外儀、凝膠成像系統
- 藥物檢測分析
- 地質
- 紡織
- 分析儀器
- 農產品質量監(jiān)測
- 1. 農藥殘毒快速檢測儀
- 2. 農產品檢測試紙
- 3. 農產品檢測試藥片
- 4. 土壤、化肥快速檢測儀
- 5. 種子外觀品質分析儀
- 水產品質量安全
- 水產技術推廣
- 水生動物防疫
- 食品檢測實驗室
- 疾病預防控制中心
- 1. 計數儀
- 2. 水產品質安監(jiān)測
- 3. 水產品檢測試紙
- 4. 水產品檢測藥品
- 1. 快速檢測試劑盒
- 2. 肉類檢測儀器
- 3. 食品安全快速分析儀
- 4. 食品安全檢測箱
- 5. 食品檢測儀器配套設備
- 6. 食品安全檢測儀器
- 7. 三十合一食品安全檢測儀
- 8. 相關配置、配件
- 供水、水文監(jiān)測
-
暫無數據,詳情請致電:18819137158 謝謝!
-
暫無數據,詳情請致電:18819137158 謝謝!
-
暫無數據,詳情請致電:18819137158 謝謝!
-
暫無數據,詳情請致電:18819137158 謝謝!
-
暫無數據,詳情請致電:18819137158 謝謝!
-
暫無數據,詳情請致電:18819137158 謝謝!
熱銷品牌 - 工業(yè)儀器
- 戶外儀器
- 環(huán)境監(jiān)測
- 便攜式儀器
- 在線式儀器
納米線構成的太陽能電池幾年后或將投產
[2013/3/27]
一個來自丹麥和瑞士的聯合研究團隊已經證明,單根納米線可聚集的太陽光強度能達到普通光照強度的15倍,這一令人驚訝的研究成果在開發(fā)以納米線為基礎的新型高效太陽能電池方面潛力巨大,有可能使太陽能轉換極限得以提高。相關論文發(fā)表在《自然·光子學》雜志上。
納米線的結構為圓柱狀,直徑約為人類發(fā)絲的萬分之一。納米線具有獨特的物理光吸收性能,有預測認為,其在太陽能電池以及未來的量子計算機和其他電子產品的開發(fā)方面具有廣闊的前景。近年來,丹麥哥本哈根大學尼爾斯·波爾研究所納米科學中心和瑞士洛桑聯邦理工學院的科學家一直在探索如何開發(fā)納米線晶體并改善其質量。
他們的研究發(fā)現,納米線能夠將太陽光自然聚集到晶體中一個非常小的區(qū)域,聚光能力是普通光照強度的15倍。由于納米線晶體的直徑小于入射太陽光的波長,可以引起納米線晶體內部以及周圍光強的共振。該研究的參與者、剛剛獲得尼爾斯·波爾研究所博士學位的彼得·克洛格斯特拉普解釋說,通過共振散發(fā)出的光子更加集中(太陽能的轉換正是在散發(fā)光子的過程中實現的),這有助于提高太陽能的轉換效率,從而使得基于納米線的太陽能電池技術得到真正的提升。
典型的太陽能轉換效率極限,也就是所謂的肖克利·奎伊瑟效率極限(Shockley-QueisserLimit),多年來一直是太陽能電池效率的瓶頸,但現在看來,這項新研究很有可能使這一轉換效率極限提高幾個百分點。
對研究人員而言,能夠突破理論極限無疑是令人興奮的。幾個百分點聽上去雖然不多,但卻會對太陽能電池的發(fā)展、基于納米線的太陽能的利用以及全球的能源開發(fā)等產生重大影響。不過,克洛格斯特拉普表示,納米線構成的太陽能電池投入產業(yè)化還需要等幾年時間。
納米線的結構為圓柱狀,直徑約為人類發(fā)絲的萬分之一。納米線具有獨特的物理光吸收性能,有預測認為,其在太陽能電池以及未來的量子計算機和其他電子產品的開發(fā)方面具有廣闊的前景。近年來,丹麥哥本哈根大學尼爾斯·波爾研究所納米科學中心和瑞士洛桑聯邦理工學院的科學家一直在探索如何開發(fā)納米線晶體并改善其質量。
他們的研究發(fā)現,納米線能夠將太陽光自然聚集到晶體中一個非常小的區(qū)域,聚光能力是普通光照強度的15倍。由于納米線晶體的直徑小于入射太陽光的波長,可以引起納米線晶體內部以及周圍光強的共振。該研究的參與者、剛剛獲得尼爾斯·波爾研究所博士學位的彼得·克洛格斯特拉普解釋說,通過共振散發(fā)出的光子更加集中(太陽能的轉換正是在散發(fā)光子的過程中實現的),這有助于提高太陽能的轉換效率,從而使得基于納米線的太陽能電池技術得到真正的提升。
典型的太陽能轉換效率極限,也就是所謂的肖克利·奎伊瑟效率極限(Shockley-QueisserLimit),多年來一直是太陽能電池效率的瓶頸,但現在看來,這項新研究很有可能使這一轉換效率極限提高幾個百分點。
對研究人員而言,能夠突破理論極限無疑是令人興奮的。幾個百分點聽上去雖然不多,但卻會對太陽能電池的發(fā)展、基于納米線的太陽能的利用以及全球的能源開發(fā)等產生重大影響。不過,克洛格斯特拉普表示,納米線構成的太陽能電池投入產業(yè)化還需要等幾年時間。